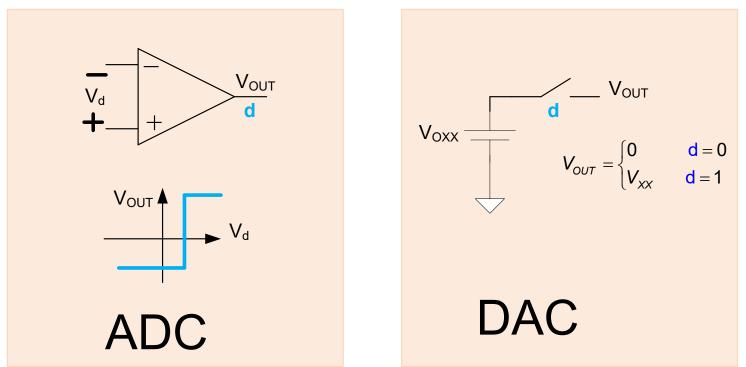
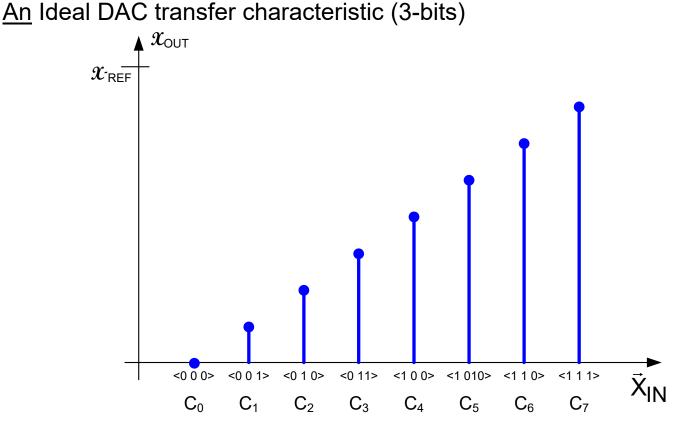
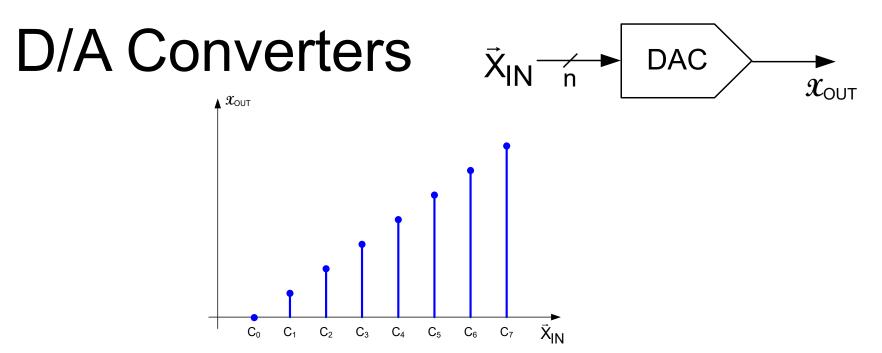

EE 505

Lecture 2 Data Converter Operation and Characterization


D/A Converters

Data Converters


Electronic Data Conversion Process:


- The comparator is the basic analog to digital conversion element in all ADCs
- The switch is the basic digital to analog conversion element in all DACs
- Data converters incorporate one or more basic ADC or DAC cells
- Design of comparator or switch is often critical in data converters
- Performance of data converters often dependent upon performance of comparator, switch, and matching

D/A Converters $\vec{X}_{IN} = <b_{n-1}, b_{n-1}, ..., b_1, b_0>$

Code C_k is used to represent the decimal equivalent of the binary number $\langle b_{n-1} ... b_0 \rangle$

For this ideal DAC

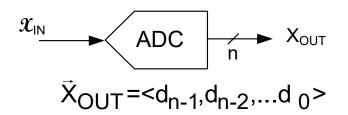
$$X_{OUT} = X_{REF} \left(\frac{b_{n-1}}{2} + \frac{b_{n-2}}{4} + \frac{b_{n-3}}{8} + \dots + \frac{b_1}{2^{n-1}} + \frac{b_0}{2^n} \right)$$
$$X_{OUT} = X_{REF} \sum_{j=1}^{n} \frac{b_{n-j}}{2^j}$$

- Number of outputs gets very large for n large
- Spacing between outputs is $X_{REF}/2^n$ and gets very small for n large

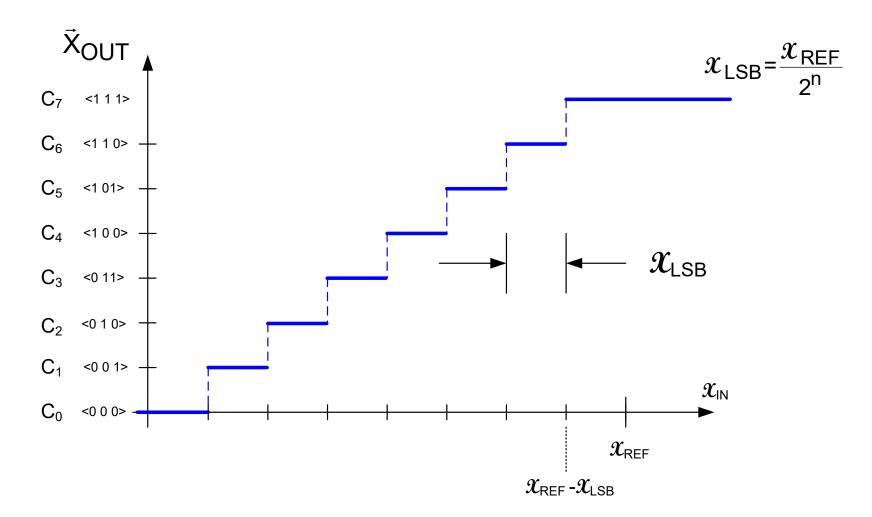
A/D Converters

(assuming binary coding)

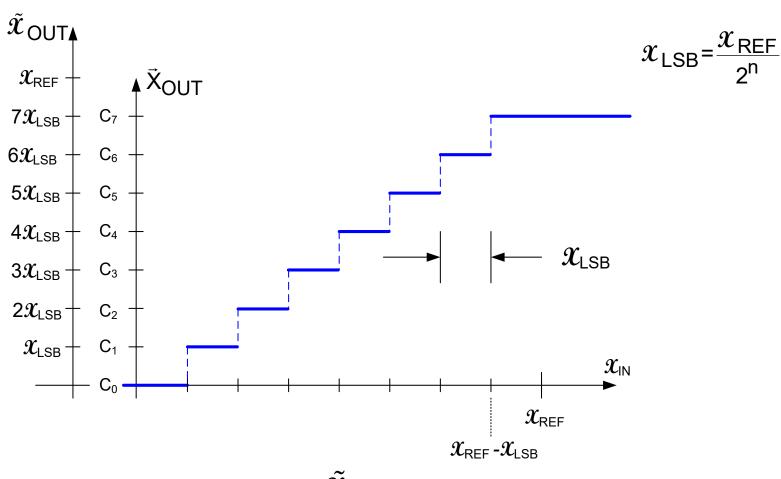
 $\bar{X}_{OIJT} = < d_{n-1}, d_{n-2}, \dots d_{0} >$


d₀ is the Least Significant Bit (LSB)

d_{n-1} is the Most Significant Bit (MSB)


An Ideal ADC is characterized at low frequencies by its static performance

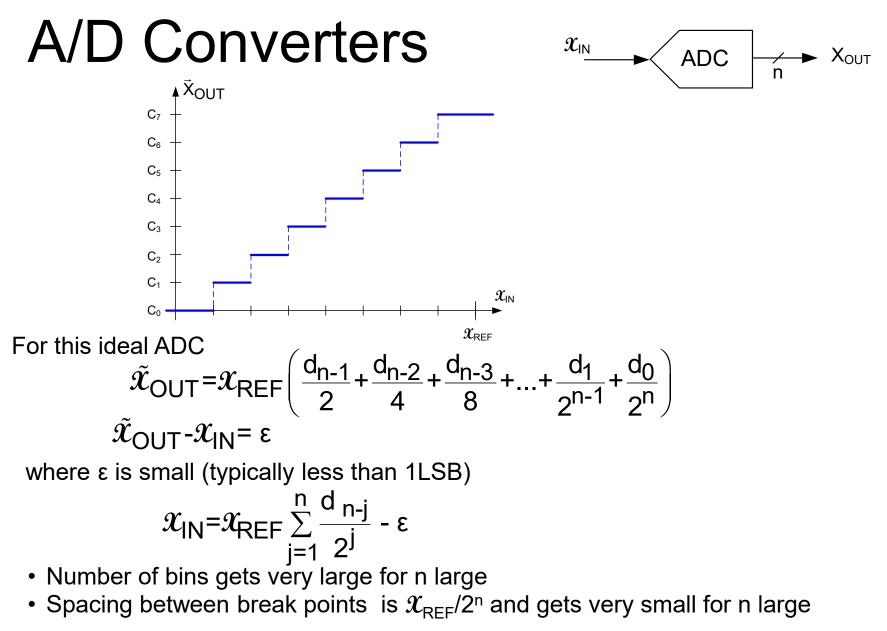
A/D Converters



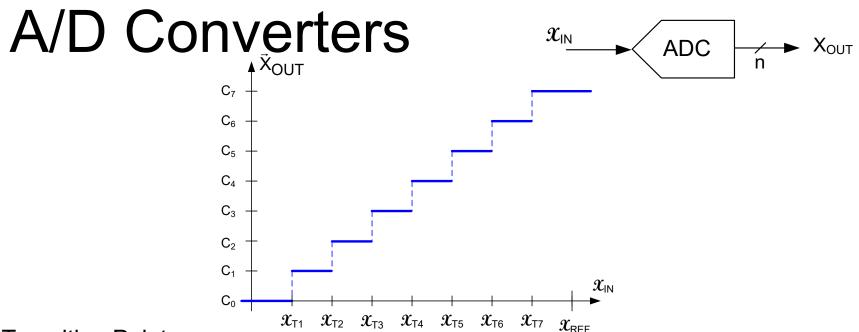
<u>An</u> Ideal ADC transfer characteristic (3-bits) (Nyquist Rate)

A/D Converters

<u>An</u> Ideal ADC transfer characteristic (3-bits)

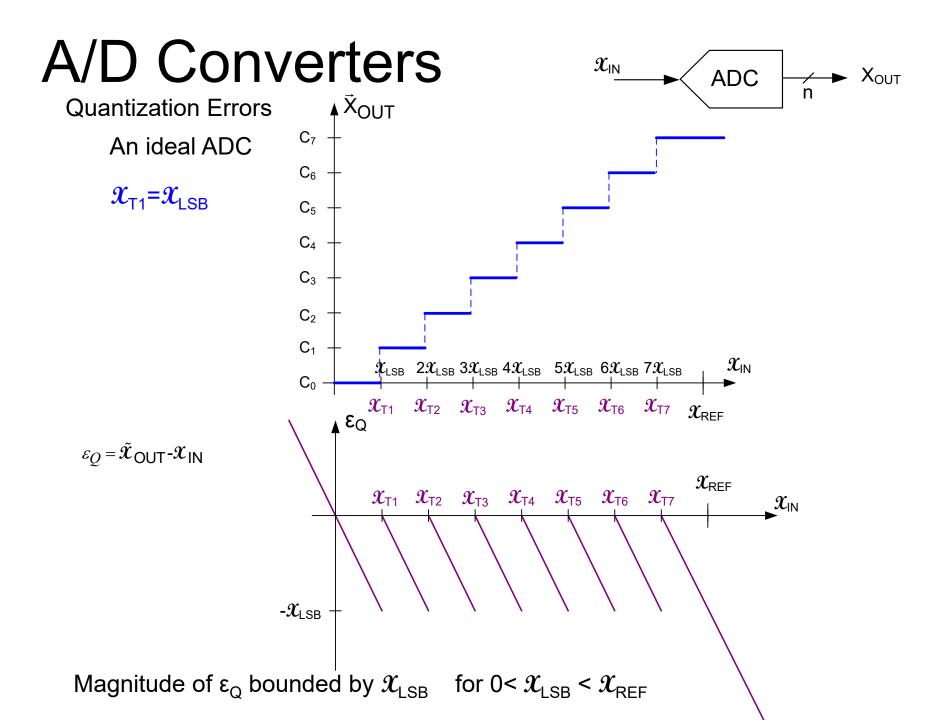

 $\mathcal{X}_{\mathsf{IN}}$

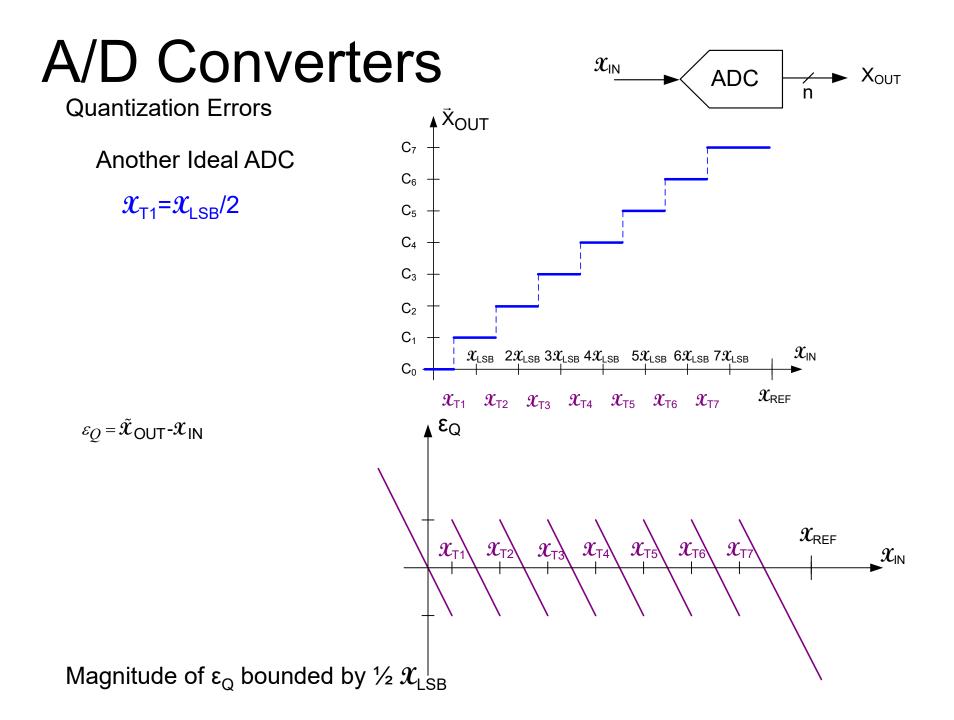
ADC

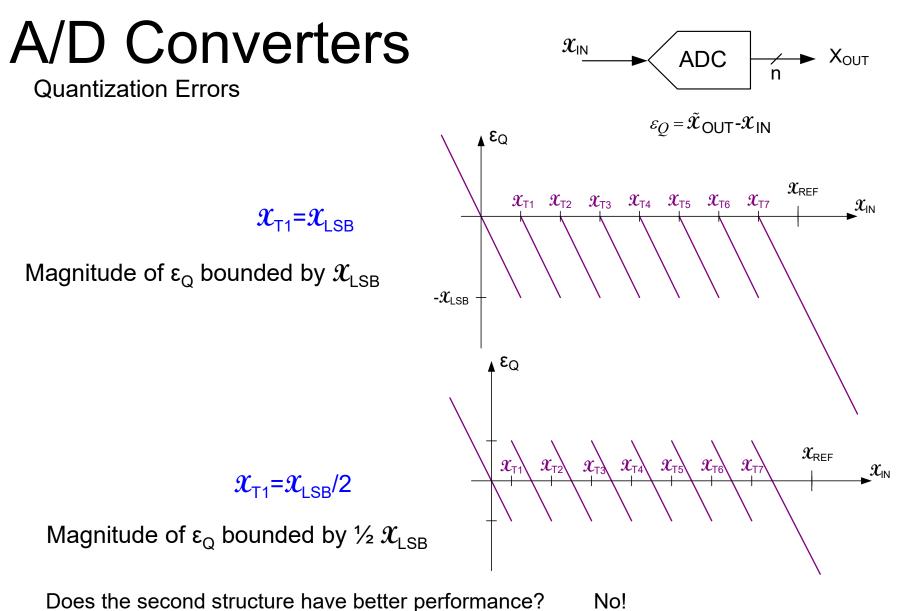

 $\bar{X}_{OUT} = < d_{n-1}, d_{n-2}, \dots d_{0} >$

X_{OUT}

The second vertical axis, labeled $\hat{\mathcal{X}}_{\mathsf{OUT}}$ is the interpreted value of $\mathcal{X}_{\mathsf{IN}}$

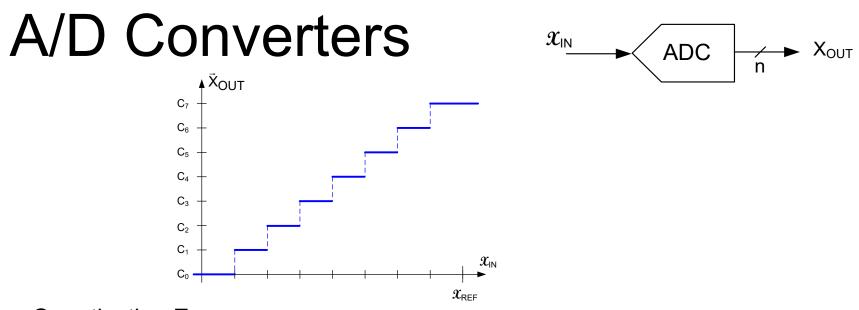



 ϵ is the **<u>quantization error</u>** and is inherent in any ADC



Transition Points

- Actual values of \mathcal{X}_{IN} where transitions occur are termed <u>transition points</u> or <u>break</u> <u>points</u>
- For an ideal n-bit ADC, there are 2ⁿ-1 transition points
- Ideally the transition points are all separated by 1 LSB -- $X_{LSB} = X_{REF}/2^n$
- Ideally the transition points are uniformly spaced
- In an actual ADC, the transition points will deviate a little from their ideal location Labeling Convention: We will define the transition point X_{Tk} to be the break point where the transition in the code output to code C_k occurs. This seemingly obvious ordering of break points becomes ambiguous, though, when more than one break points cause a transition to code C_k which can occur in some nonideal ADCs



·

P-P quantization error is what is important when designing ADC and both are the same

Quantization Errors

$$\varepsilon_{Q} = \mathscr{X}_{REF} \left(\frac{d_{n-1}}{2} + \frac{d_{n-2}}{4} + \frac{d_{n-3}}{8} + \dots + \frac{d_{1}}{2^{n-1}} + \frac{d_{0}}{2^{n}} \right) - \mathscr{X}_{IN}$$

- The only way to reduce p-p quantization errors (in Nyquist-rate converters) is to increase number of levels
- A lower bound on the quantization errors in $0 < \mathcal{X}_{IN} < \mathcal{X}_{REF}$ is $\pm \frac{1}{2} \mathcal{X}_{LSB}$
- The static performance of an ADC is completely determined by the finite sequence of the transition points < \mathcal{X}_{T1} , ... \mathcal{X}_{T1} >

A/D Converters

Many types:

Successive Approximation Register (SAR) Pipelined Sigma-Delta Flash Single-slope Dual-slope Wide ranges of performance: Speed Resolution Power

Cost

Large number of vendors of catalog parts:

Texas Instruments Analog Devices (Linear Technology) Maxim

Embedded applications probably much larger:

Many SoCs contain a large number of data converters of with varying performance

A/D Converters

What types are really used?

Consider catalog parts from one vendor – Analog Devices (Jan 2017)

Flash	2
SAR	233
Pipelined	242
Sigma-Delta	81
-	
Total	559

What do ADCs cost?

A/D Converters

laximize Filters	Sort by	Newest	Choose Param	eters R	eset Table	Download to	Excel	G	lelp		
Part # 🔶	Hardware	ADC Resolution (bits)	ADC Output Sample Rate	ADC Channels	Device	US Price ▲ 1000 to 1 4999 (\$ US)	INL in LSB (typ) (LSBs)	\$	Vin Range (typ) (V p-p)	ADC SNR ‡ in dBFS (typ) (dBFS)	Power Dissipation (typ) (W)
	0 Values	▼ 16 Values ▼	16.6 - 2.5G	13 Value▼	7 Values S 🔻	0.95 - 916.5	0.1 -	33.55	0.078 - 40	47 - 107.8	21u - 4.2
AD7492-5		3 12	1.25M	-	SAR	**		-	-	-	16.5m
AD7170	🔀 📱	3 12	125	1	Sigma-Delta	\$0.95		-	-	-	150µ
AD7478		- 8	1M	1	SAR	\$0.96		-	5.25	-	17.5m
AD7478A		- 8	1.2M	1	SAR	\$1.12		-	5.25	-	17.5m
AD7171	🔀 🗉	3 16	125	1	Sigma-Delta	\$1.15		-	-	-	150µ
AD7999		- 8	140k	4	SAR	\$1.35		-	5.5	-	4.7m
AD7468		ع 🚯	320k	1	SAR	\$1.35		-	3.6	-	570µ
AD7091		3 12	1M	1	SAR	\$1.60		-	5.25	-	2.4m
AD7904		ع 🚯	1M	4	SAR	\$1.68		-	5.1	-	13.5m
AD7910		3 10	250k	1	SAR	\$1.77		-	5.25	-	15m
AD7995	🔀 📱	3 1C	140k	4	SAR	\$1.80		-	5.5	-	4.4m
AD7276		3 12	3M	1	SAR	\$1.85		-	3.6	-	19.8m
AD7908		- 8	5 1M	8	SAR	\$1.87		-	5.05	-	13.5m

What do ADCs cost?

A/D Converters

Maximize Filters	Sort by N	lewest C	hoose Param	eters R	eset Table	Download to Ex	cel H	lelp		
Part# ♀	Hardware	ADC Resolution (bits)	ADC Output Sample Rate	ADC 🛟 🧮 Channels	Architecture	US Price IN 1000 to 1 LS 4999 (ty (\$ US) (L	B	Vin Range (typ) (V p-p)	ADC SNR ‡ in dBFS (typ) (dBFS)	Power Dissipation (typ) (W)
	0 Values 🔻	16 Values 🔻	16.6 - 2.5G	13 Value▼	7 Values S 🔻	0.95 - 916.5 0.	1 - 33.55	0.078 - 40	47 - 107.8	21u - 4.2
AD10465	••	14	65M	2	Pipelined	\$916.53	-	4	-	3.5
ad9625-2600	••	12	-	1	Pipelined	\$837.42	1	1.1	58.1	4
ad9625-2500	•	12	2.5G	1	Pipelined	\$735.00	1	1.1	58.3	3.9
AD9691	-	14	1250M	2	Pipelined	\$692.75	2.6	1.58	63.4	3.8
AD9680-1250	••	14	1.25G	2	Pipelined	\$692.75	3	1.58	63.6	3.7
ad9625-2000	••	12	2G	1	Pipelined	\$624.75	0.9	1.1	59.5	3.48
AD9680-1000	••	14	1G	2	Pipelined	\$584.38	2.5	1.7	67.2	3.3
AD9694	=	14	500M	4	Pipelined	\$488.75	1	-	67.1	1.66

Resolution?

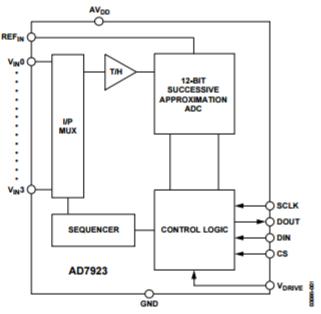
3 bits to 24 bits (one at 32 bits)

4-Channel, 200 kSPS 12-Bit ADC with Sequencer in 16-Lead TSSOP

Data Sheet

\$2.58 in 1000's

FEATURES


Fast throughput rate: 200 kSPS Specified for AV_{DD} of 2.7 V to 5.25 V Low power 3.6 mW max at 200 kSPS with 3 V supply 7.5 mW max at 200 kSPS with 5 V supply 4 (single-ended) inputs with sequencer Wide input bandwidth 70 dB Min SNR at 50 kHz input frequency Flexible power/serial clock speed management No pipeline delays High speed serial interface SPI^{*}-/QSPITM-/ MICROWIRETM-/DSP-compatible Shutdown mode: 0.5 µA max 16-lead TSSOP package Qualified for automotive applications

GENERAL DESCRIPTION

The AD7923 is a 12-bit, high speed, low power, 4-channel, suc-

FUNCTIONAL BLOCK DIAGRAM

AD7923

SPECIFICATIONS

AV_{DD} = V_{DRIVE} = 2.7 V to 5.25 V, REF_{IN} = 2.5 V, f_{SCLK} = 20 MHz, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.

Table 1.

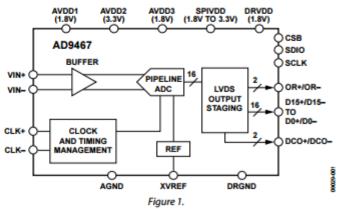
Parameter	B Version ¹	Unit	Test Conditions/Comments
DYNAMIC PERFORMANCE			f _{IN} = 50 kHz sine wave, f _{SCLK} = 20 MHz
Signal-to-(Noise + Distortion) (SINAD) ²	70	dB min	@ 5 V, -40°C to +85°C
	69	dB min	@ 5 V, 85°C to 125°C, typ 70 dB
	69	dB min	@ 3 V typ 70 dB, -40°C to +125°C
Signal-to-Noise (SNR) ²	70	dB min	
Total Harmonic Distortion (THD) ²	-77	dB max	@ 5 V typ, –84 dB
	-73	dB max	@ 3 V typ,-77 dB
Peak Harmonic or Spurious Noise	-78	dB max	@ 5 V typ, -86 dB
(SFDR) ²	-76	dB max	@ 3 V typ, -80 dB
Intermodulation Distortion (IMD) ²			$f_A = 40.1 \text{ kHz}, f_B = 41.5 \text{ kHz}$
Second Order Terms	-90	dB typ	
Third Order Terms	-90	dB typ	
Aperture Delay	10	ns typ	
Aperture Jitter	50	ps typ	
Channel-to-Channel Isolation	-85	dB typ	f _{IN} = 400 kHz
Full Power Bandwidth	8.2	MHz typ	@ 3 dB
	1.6	MHz typ	@ 0.1 dB
DC ACCURACY ²			
Resolution	12	Bits	
Integral Nonlinearity	±1	LSB max	
Differential Nonlinearity	-0.9/+1.5	LSB max	Guaranteed no missed codes to 12 bits
0 V to REFIN Input Range			Straight binary output coding
Offset Error	±8	LSB max	Typ ±0.5 LSB
Offset Error Match	±0.5	LSB max	· //
Gain Error	+1.5	LSB max	
Gain Error Match	±0.5	LSB max	
0 V to 2 × REF _{IN} Input Range			-REFIN to +REFIN biased about REFIN with twos
			complement output coding
Positive Gain Error	±1.5	LSB max	
Positive Gain Error Match	±0.5	LSB max	
Zero-Code Error	±8	LSB max	Typ ±0.8 LSB
Zero-Code Error Match	±0.5	LSB max	
Negative Gain Error	±1	LSB max	
Negative Gain Error Match	±0.5	LSB max	
ANALOG INPUT			
Input Voltage Range	0 to REFIN	v	Range bit set to 1
	0 to 2 × REF _{IN}	v	Range bit set to 0, $AV_{DD} = 4.75$ V to 5.25 V
DC Leakage Current	±1	µA max	
Input Capacitance	20	pF typ	
REFERENCE INPUT			
REF _{IN} Input Voltage	2.5	v	±1% specified performance
DC Leakage Current	±1	µA max	Participation of the second seco
REF _{IN} Input Impedance	36	kΩ typ	fsample = 200 kSPS
LOGIC INPUTS			
Input High Voltage, VINH	0.7 × VDRIVE	Vmin	
Input Low Voltage, VIN	0.3 × VDRIVE	V max	
Input Current, IN	±1	uA max	Typ 10 nA, V _{IN} = 0 V or V _{DRVE}
Input Canacitance Cm ³	10	pE max	THE REPORT OF THE PARTY OF THE

16-Bit, 200 MSPS/250 MSPS Analog-to-Digital Converter

Data Sheet

\$120 in 1000's

AD9467


FEATURES

75.5 dBFS SNR to 210 MHz at 250 MSPS 90 dBFS SFDR to 300 MHz at 250 MSPS SFDR at 170 MHz at 250 MSPS 92 dBFS at -1 dBFS 100 dBFS at -2 dBFS 60 fs rms jitter Excellent linearity at 250 MSPS $DNL = \pm 0.5 LSB typical$ INL = ±3.5 LSB typical 2 V p-p to 2.5 V p-p (default) differential full-scale input (programmable) Integrated input buffer External reference support option Clock duty cycle stabilizer Output clock available Serial port control Built-in selectable digital test pattern generation Selectable output data format LVDS outputs (ANSI-644 compatible) 1.8 V and 3.3 V supply operation

APPLICATIONS

Multicarrier, multimode cellular receivers Antenna array positioning Power amplifier linearization Broadband wireless Radar Infrared imaging Communications instrumentation

FUNCTIONAL BLOCK DIAGRAM

A data clock output (DCO) for capturing data on the output is provided for signaling a new output bit.

The internal power-down feature supported via the SPI typically consumes less than 5 mW when disabled.

Optional features allow users to implement various selectable operating conditions, including input range, data format select, and output data test patterns.

The AD9467 is available in a Pb-free, 72-lead, LFCSP specified over the -40°C to +85°C industrial temperature range.

SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.3 V, AVDD3 = 1.8 V, DRVDD = 1.8 V, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, AIN = -1.0 dBFS, DCS on, default SPI settings, unless otherwise noted.

Parameter ¹	Temp	Min	Тур	Max	Unit
RESOLUTION		16			Bits
ACCURACY					
No Missing Codes	Full		Guarantee	ed	
Offset Error	Full	-200	0	+200	LSB
Gain Error	Full	-3.9	-0.1	+2.6	%FSR
Differential Nonlinearity (DNL) ²	Full	-0.9	±0.5	+1.5	LSB
Integral Nonlinearity (INL) ²	Full	-12	±3.5	+12	LSB
TEMPERATURE DRIFT					
Offset Error	Full		±0.023		%FSR/°C
Gain Error	Full		±0.036		%FSR/°C
ANALOG INPUTS					
Differential Input Voltage Range (Internal VREF = 1 V to 1.25 V)	Full	2	2.5	2.5	V p-p
Common-Mode Voltage	25°C		2.15		v
Differential Input Resistance	25°C		530		Ω
Differential Input Capacitance	25°C		3.5		pF
Full Power Bandwidth	25°C		900		MHz
XVREF INPUT					
Input Voltage	Full	1		1.25	V
Input Capacitance	Full		3		pF
POWER SUPPLY					
AVDD1	Full	1.75	1.8	1.85	V
AVDD2	Full	3.0	3.3	3.6	V
AVDD3	Full	1.7	1.8	1.9	V
DRVDD	Full	1.7	1.8	1.9	V
AVDD1	Full		567	620	mA
AVDD2	Full		55	61	mA
AVDD3	Full		31	35	mA
DRVDD	Full		40	43	mA
Total Power Dissipation (Including Output Drivers)	Full		1.33	1.5	w
Power-Down Dissipation	Full		4.4	90	mW

Table 1.

¹ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed. ² Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.

AC SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.3 V, AVDD3 = 1.8 V, DRVDD = 1.8 V, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, AIN = -1.0 dBFS, DCS on, default SPI settings, unless otherwise noted.

Parameter ¹	Temp	Min	Тур	Max	Unit
ANALOG INPUT FULL SCALE		2.5	2/2.5		V p-p
SIGNAL-TO-NOISE RATIO (SNR)					
f _{IN} = 5 MHz	25°C		74.7/76.4		dBFS
f _N = 97 MHz	25°C		74.5/76.1		dBFS
f _N = 140 MHz	25°C		74.4/76.0		dBFS
f _N = 170 MHz	25°C	73.7	74.3/75.8		dBFS
	Full	71.5			dBFS
fn = 210 MHz	25°C		74.0/75.5		dBFS
$f_{\rm N} = 300 \rm MHz$	25°C		73.3/74.6		dBFS
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)					
f _N = 5 MHz	25°C		74.6/76.3		dBFS
f _N = 97 MHz	25°C		74.4/76.0		dBFS
$f_{\rm N} = 140 \rm MHz$	25°C		74.4/76.0		dBFS
f _N = 170 MHz	25°C	72.4	74.2/75.8		dBFS
	Full	71.0	11.277 5.0		dBFS
f _m = 210 MHz	25°C	/1.0	73.9/75.4		dBFS
fn = 300 MHz	25°C		73.1/74.4		dBFS
EFFECTIVE NUMBER OF BITS (ENOB)	250		/3.1//4.4		ubra
	25°C		121/124		Disc
f _N = 5 MHz f _N = 97 MHz	25°C		12.1/12.4		Bits Bits
			12.1/12.3		
f _N = 140 MHz	25°C		12.1/12.3		Bits
f _N = 170 MHz	25°C		12.0/12.3		Bits
	Full	11.5			Bits
f _N = 210 MHz	25°C		12.0/12.2		Bits
f _N = 300 MHz	25°C		11.9/12.1		Bits
SPURIOUS-FREE DYNAMIC RANGE (SFDR) (INCLUDING SECOND AND THIRD HARMONIC DISTORTION)					
f _{IN} = 5 MHz	25°C		98/97		dBFS
$f_N = 97 \text{ MHz}$	25°C		95/93		dBFS
$f_{IN} = 140 \text{ MHz}$	25°C		94/95		dBFS
f _N = 170 MHz	25°C	82	93/92		dBFS
	Full	82			dBFS
f _N = 210 MHz	25°C		93/92		dBFS
f _N = 300 MHz	25°C		93/90		dBFS
SFDR (INCLUDING SECOND AND THIRD HARMONIC DISTORTION)					
f _N = 5 MHz at -2 dB Full Scale	25°C		100/100		dBFS
f _N = 97 MHz at -2 dB Full Scale	25°C		97/97		dBFS
f _{IN} = 140 MHz at-2 dB Full Scale	25°C		100/95		dBFS
f _{IN} = 170 MHz at -2 dB Full Scale	25°C		100/100		dBFS
f _{IN} = 210 MHz at -2 dB Full Scale	25°C		93/93		dBFS
f _{IN} = 300 MHz at -2 dB Full Scale	25°C		90/90		dBFS
WORST OTHER (EXCLUDING SECOND AND THIRD HARMONIC DISTORTION)					
f _{IN} = 5 MHz	25°C		98/97		dBFS
f _N = 97 MHz	25°C		97/93		dBFS
fin = 140 MHz	25°C		97/95		dBFS
$f_{\rm IN} = 170 \rm MHz$	25°C	88	97/93		dBFS
	Full	82			dBFS
f _m = 210 MHz	25°C		97/95		dBFS
fn = 300 MHz	25°C		97/95		dBFS

SWITCHING SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.3 V, AVDD3 = 1.8 V, DRVDD = 1.8 V, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, AIN = -1.0 dBFS, DCS on, default SPI settings, unless otherwise noted.

Parameter ¹	Temp	Min	Тур	Max	Unit
CLOCK ²					
Clock Rate	Full	50		250	MSPS
Clock Pulse Width High (tc+)	Full		2		ns
Clock Pulse Width Low (ta)	Full		2		ns
OUTPUT PARAMETERS ^{2, 3}					
Propagation Delay (tpp)	25°C		3		ns
Rise Time (t _R) (20% to 80%)	25°C		200		ps
Fall Time (t _F) (20% to 80%)	25°C		200		ps
DCO Propagation Delay (tcro)	25°C		3		ns
DCO to Data Delay (tskew)	Full	-200		+200	ps
Wake-Up Time (Power-Down)	Full		100		ms
Pipeline Latency	Full		16		Clock cycles
APERTURE					
Aperture Delay (ta)	25°C		1.2		ns
Aperture Uncertainty (Jitter)	25°C		60		fs rms
Out-of-Range Recovery Time	25°C		1		Clock cycles

Table 4.

¹ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.

² Can be adjusted via the SPI interface.

³ Maacuramante ware made using a part coldored to ED.4 material

- A large number of parameters are used to characterize a data converter
- Performance parameters of interest depend strongly on the application
- Very small number of parameters of interest in many/most applications
- "Catalog" data converters are generally intended to satisfy a wide range of applications and thus have much more stringent requirements placd on their performance
- Custom application-specific data converter will generally perform much better than a "catalog" part in the same

- Static characteristics
 - Resolution
 - Least Significant Bit (LSB)
 - Offset and Gain Errors
 - Absolute Accuracy
 - Relative Accuracy
 - Integral Nonlinearity (INL)
 - Differential Nonlinearity (DNL)
 - Monotonicity (DAC)
 - Missing Codes (ADC)
 - Quantization Noise
 - Low-f Spurious Free Dynamic Range (SFDR)
 - Low-f Total Harmonic Distortion (THD)
 - Effective Number of Bits (ENOB)
 - Power Dissipation

- Dynamic characteristics
 - Conversion Time or Conversion Rate (ADC)
 - Settling time or Clock Rate (DAC)
 - Sampling Time Uncertainty (aperture uncertainty or aperture jitter)
 - Dynamic Range
 - Spurious Free Dynamic Range (SFDR)
 - Total Harmonic Distortion (THD)
 - Signal to Noise Ratio (SNR)
 - Signal to Noise and Distortion Ratio (SNDR)
 - Sparkle Characteristics
 - Effective Number of Bits (ENOB)

Dynamic characteristics

- Degradation of dynamic performance parameters often due to nonideal effects in time-domain performance
- Dynamic characteristics of high resolution data converters often challenging to measure, to simulate, to understand source of contributions, and to minimize

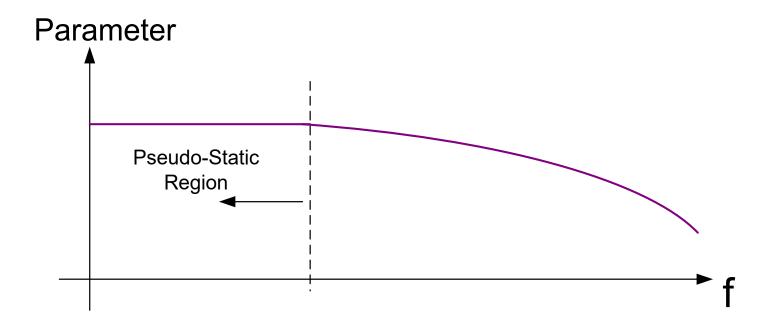
Example: An n-bit ADC would often require SFDR at the 6n+6 bit level or better. Thus, considering a 14-bit ADC, the SFDR would be expected to be at the -90dB level or better.

If the input to the ADC is a 1V p-p sinusoidal waveform, the second harmonic term would need to be at the $10^{(-90dB/20dB)} = 32\mu$ V level or lower. A 32uV level is about 1 part in 30,000. Signals at this level are difficult to accurately simulate in the presence of a 1V level signal. For example, convergence parameters in simulators and sample (strobe) points used in data acquisition adversely affect simulation results and observing the time domain waveforms that contribute to nonlinearity at this level and relationships between these waveforms and the sources of nonlinearity is often difficult to visualize. Simulation errors that are at the 20dB level or worse can occur if the simulation environment is not correctly established.

Characterization of Data Converter Performance

- Almost all ADC architectures will work perfectly if nonideal effects are ignored !!
- Most data converter design effort involves managing nonideal properties of components
- "Devil is often in the detail" when designing an ADC

Critical to know how to accurately characterize an ADC


What may appear to be minor differences in performance are often differentiators in both the marketplace and in the profit potential of a part

Performance Characterization of Data Converters What is meant by "low frequency" ?

Operation at frequencies so low that further decreases in frequency cause no further changes in a parameter of interest

Low frequency operation is often termed Pseudostatic operation

Low-frequency or Pseudo-Static Performance

- Static characteristics
- Least Significant Bit (LSB)
 - Offset and Gain Errors
 - Absolute Accuracy
 - Relative Accuracy
 - Integral Nonlinearity (INL)
 - Differential Nonlinearity (DNL)
 - Monotonicity (DAC)
 - Missing Codes (ADC)
 - Quantization Noise
 - Low-f Spurious Free Dynamic Range (SFDR)
 - Low-f Total Harmonic Distortion (THD)
 - Effective Number of Bits (ENOB)
 - Power Dissipation

Performance Characterization Resolution

- Number of distinct analog levels in an ADC
- Number of digital output codes in A/D
- In most cases this is a power of 2
- If a converter can resolve 2ⁿ levels, then we term it an n-bit converter
 - 2ⁿ analog outputs for an n-bit DAC
 - 2ⁿ-1 transition points for an n-bit ADC
- Resolution is often determined by architecture and thus not measured
- Effective resolution can be defined and measured
 - If N levels can be resolved for an DAC then

$$n_{EQ} = \frac{\log N}{\log 2}$$

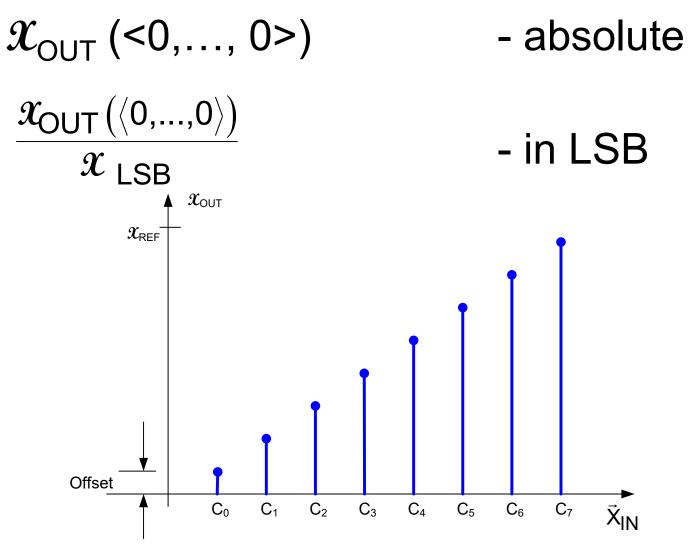
– If N-1 transition points in an ADC, then

n _{EQ}=
$$\frac{\log N}{\log 2}$$

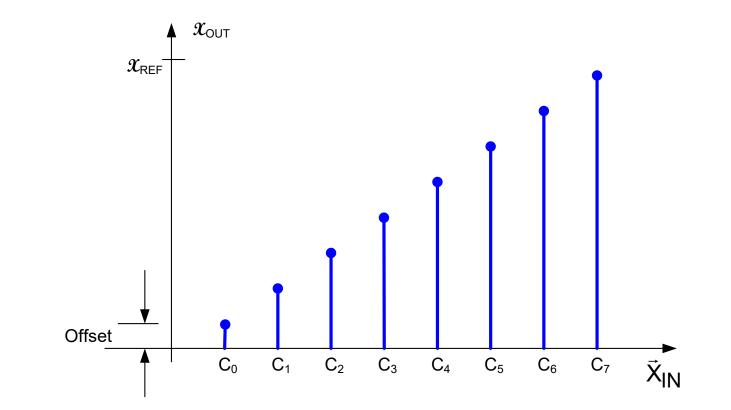
Performance Characterization Least Significant Bit

Assume $N = 2^{n}$

Generally Defined by Manufacturer to be $\mathcal{X}_{\text{LSB}} = \mathcal{X}_{\text{REF}} / \text{N}$

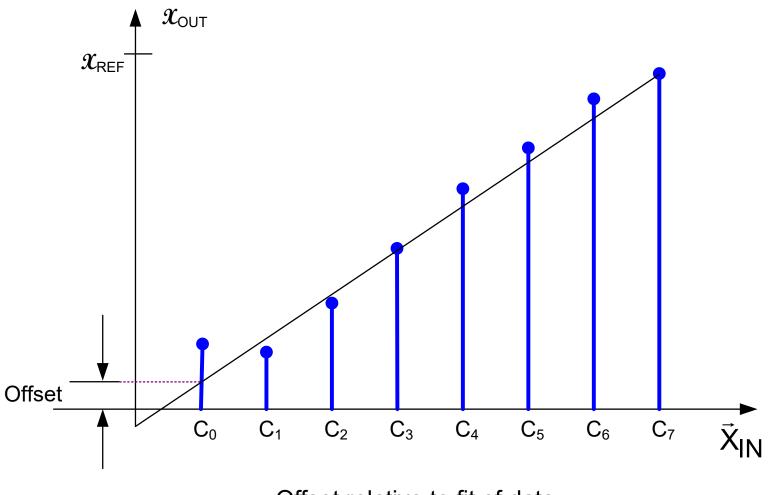

Effective Value of LSB can be Measured

For DAC: \mathcal{X}_{LSB} is equal to the maximum increment in the output for a single bit change in the Boolean input


For ADC: $\mathcal{X}_{\rm LSB}$ is equal to the maximum distance between two adjacent transition points

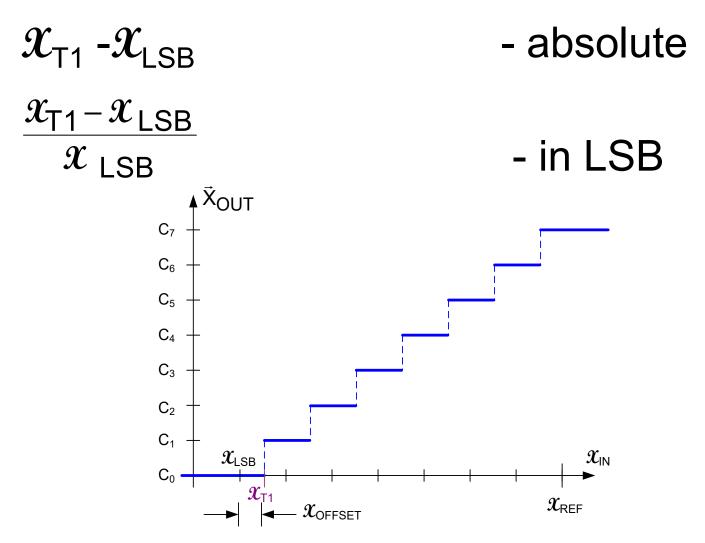
Performance Characterization Offset

For DAC with ideal code 0 output of 0V the offset is

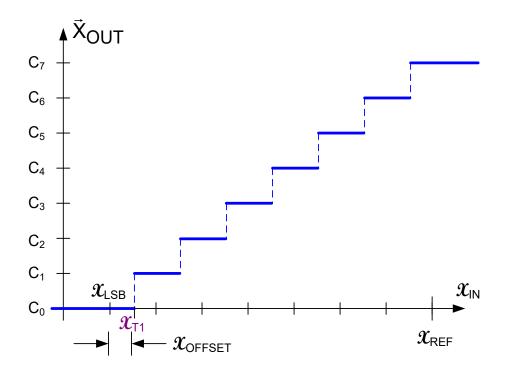


Performance Characterization Offset (for DAC)

- Offset strongly (totally) dependent upon performance at a single point
- Probably more useful to define relative to a fit of the data

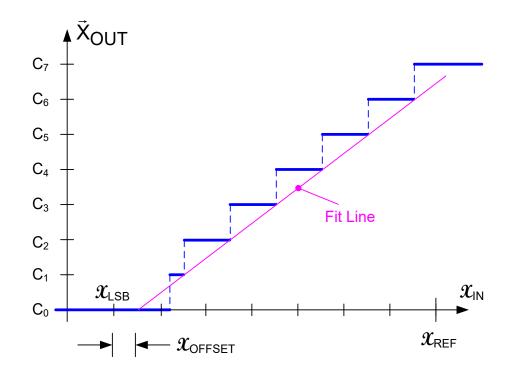

Performance Characterization Offset (for DAC)

Offset relative to fit of data


Performance Characterization Offset

For ADC with ideal transition point at 1 LSB, the offset is

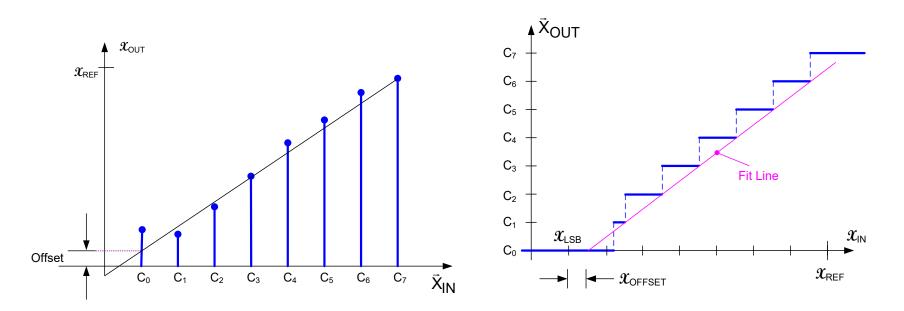
Performance Characterization Offset


For ADC the offset is

- Offset strongly (totally) dependent upon performance at a single point
- Probably more useful to define relative to a fit line of the data

Performance Characterization Offset

For ADC the offset is

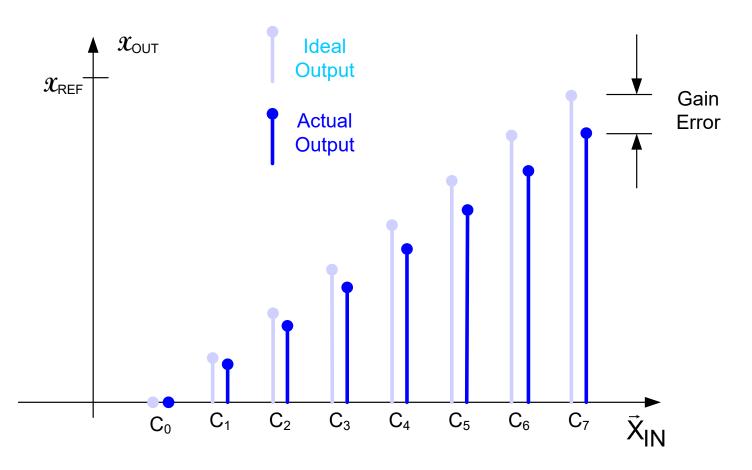


Offset relative to fit line of data

Performance Characterization

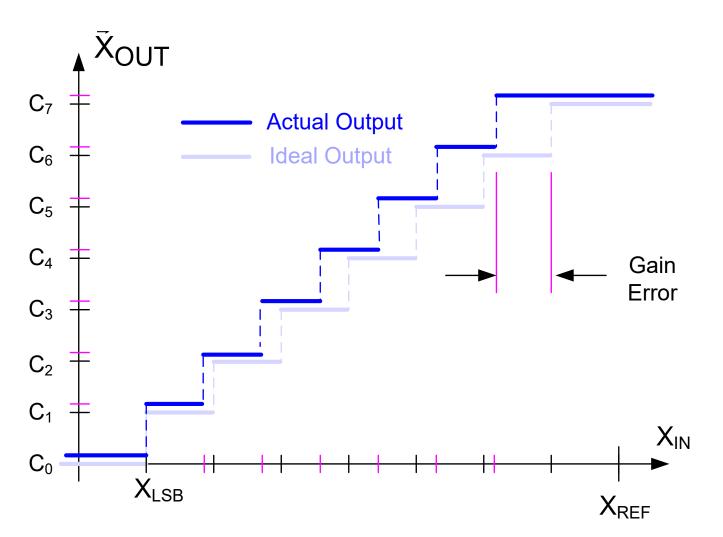
Offset

Offset relative to fit line


Probably more useful to define relative to a fit line of the data

But more useful definition seldom used

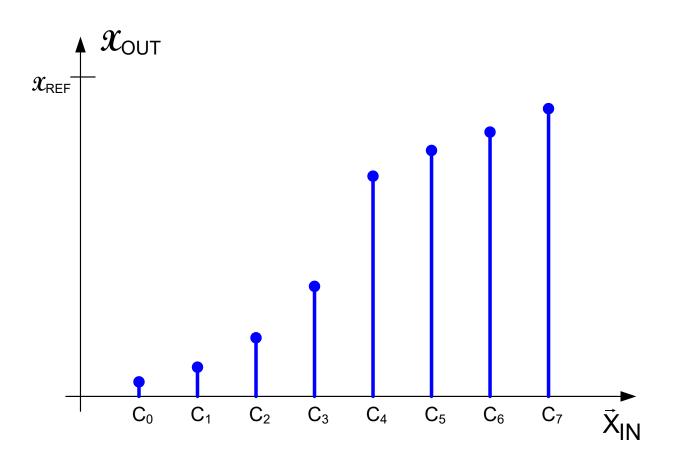
Why is more useful definition seldom used? Probably due to test costs !

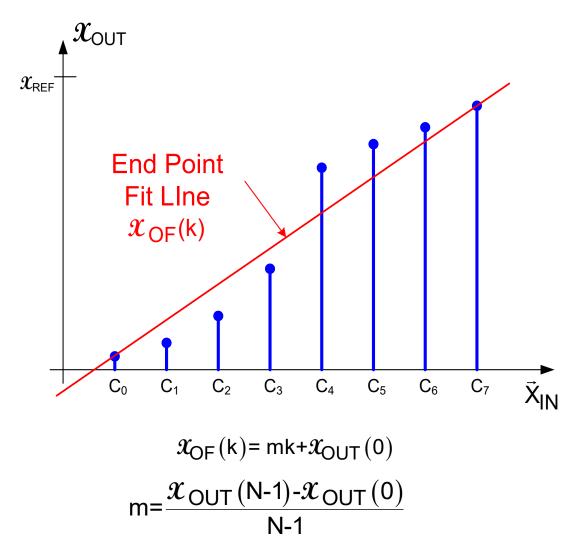

Performance Characterization Gain and Gain Error

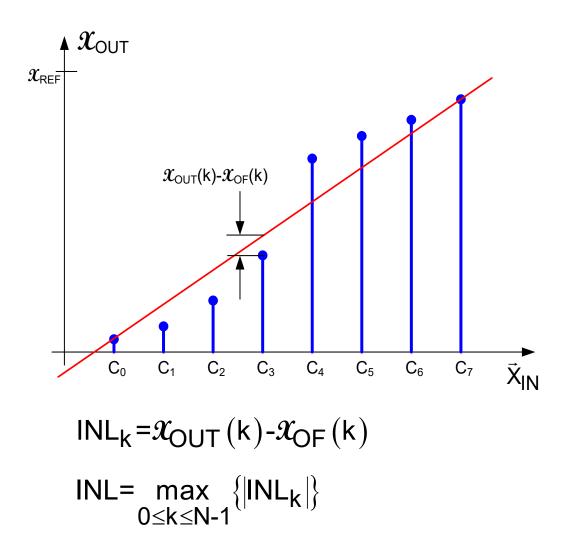
For DAC

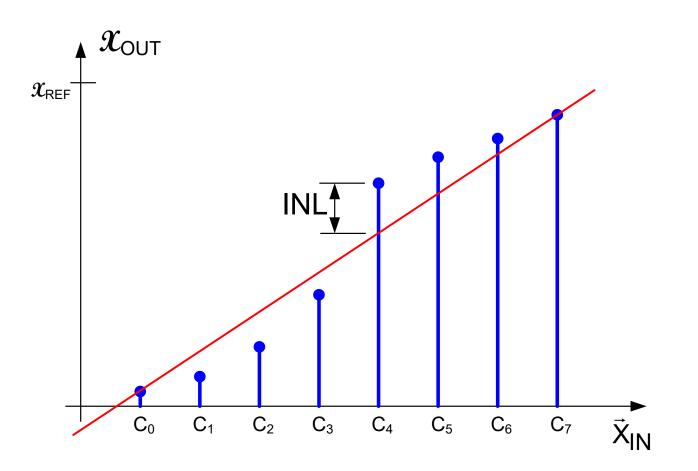
Performance Characterization Gain and Gain Error

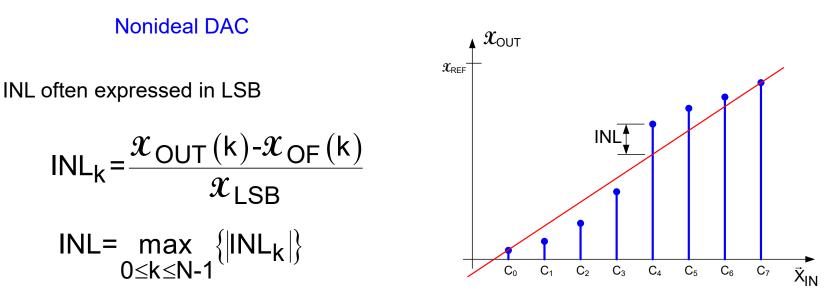
For ADC

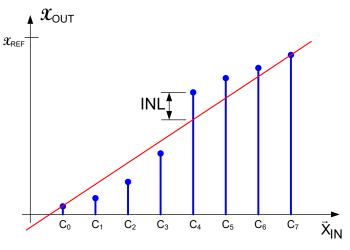

Performance Characterization

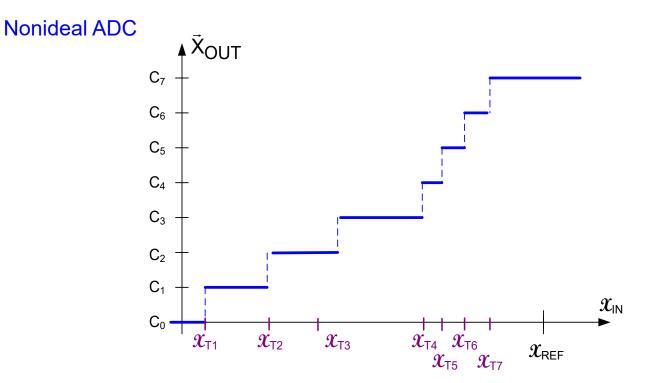

Gain and Offset Errors


- Fit line would give better indicator of error in gain but less practical to obtain in test
- Gain and Offset errors of little concern in many applications
- Performance of systems using data converters is often nearly independent of gain and offset errors
- Can be trimmed in field if gain or offset errors exist and are of concern


Performance Characterization of Data Converters

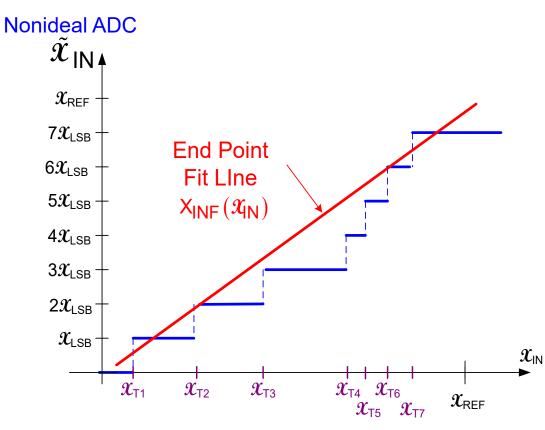

- Static characteristics
 - Y− Resolution
 - Y− Least Significant Bit (LSB)
 - Offset and Gain Errors
 - Absolute Accuracy
 - Relative Accuracy
- Integral Nonlinearity (INL)
 - Differential Nonlinearity (DNL)
 - Monotonicity (DAC)
 - Missing Codes (ADC)
 - Quantization Noise
 - Low-f Spurious Free Dynamic Range (SFDR)
 - Low-f Total Harmonic Distortion (THD)
 - Effective Number of Bits (ENOB)
 - Power Dissipation





- INL is often the most important parameter of a DAC
- INL_0 and INL_{N-1} are 0 (by definition)
- There are N-2 elements in the set of INL_k that are of concern
- INL is almost always nominally 0 (i.e. designers try to make it 0)
- INL is a random variable at the design stage
- INL_k is a random variable for 0<k<N-1
- INL_k and INL_{k+j} are almost always correlated for all k,j (not incl 0, N-1)
- Fit Line is a random variable
- INL is the N-2 order statistic of a set of N-2 correlated random variables
- INL is a parameter that is attempting to characterize the linearity of a DAC !

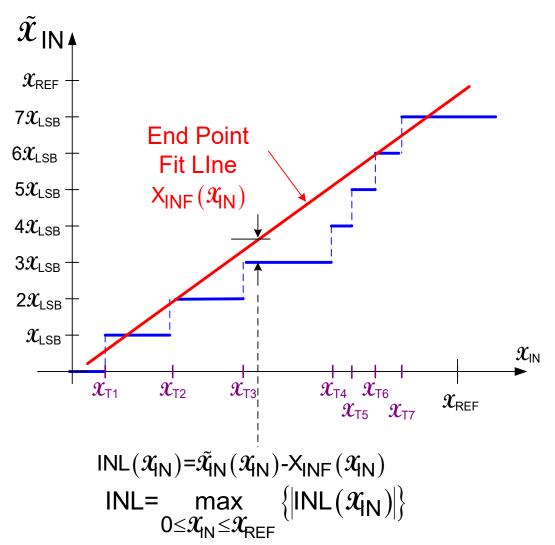
- At design stage, INL characterized by standard deviation of the random variable
- Closed-form expressions for INL almost never exist because PDF of order statistics of correlated random variables is extremely complicated
- Simulation of INL very time consuming if n is very large (large sample size required to establish reasonable level of confidence)
 - Model parameters become random variables
 - Process parameters affect multiple model parameters causing model parameter correlation
 - Simulation times can become very large
- INL can be readily measured in laboratory but often dominates test costs because of number of measurements needed when n is large
- Expected value of INL_k at k=(N-1)/2 is largest for many architectures
- Major effort in DAC design is in obtaining acceptable yield !
- Yield often strongly dependent upon matching of random variables!

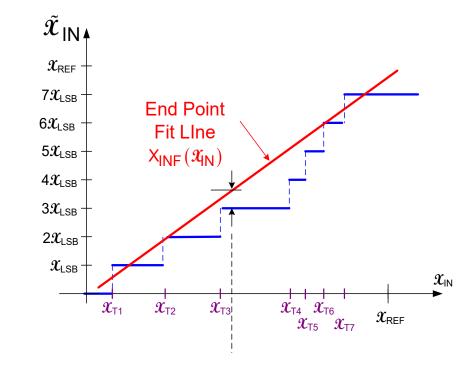

 $\mathcal{X}_{\mathsf{Tk}}$ is the transition input to code C_{k}

Transition points are not uniformly spaced !

More than one definition for INL exists !

Will give two definitions here (second almost always used)

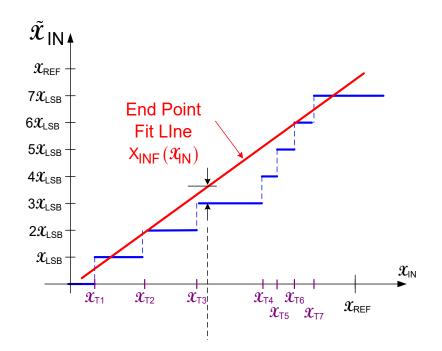

Note: is some cases the sequence $< \mathcal{X}_{Tk} >$ may not be monotone


Consider end-point fit line with interpreted output axis

$$X_{\text{INF}}(\mathfrak{X}_{\text{IN}}) = m \mathfrak{X}_{\text{IN}} + \left(\frac{\mathfrak{X}_{\text{LSB}}}{2} - m \mathfrak{X}_{\text{T1}}\right)$$
$$m = \frac{(N-2)\mathfrak{X}_{\text{LSB}}}{\mathfrak{X}_{\text{T7}} - \mathfrak{X}_{\text{T1}}}$$

Continuous-input based INL definition

Continuous-input based INL definition

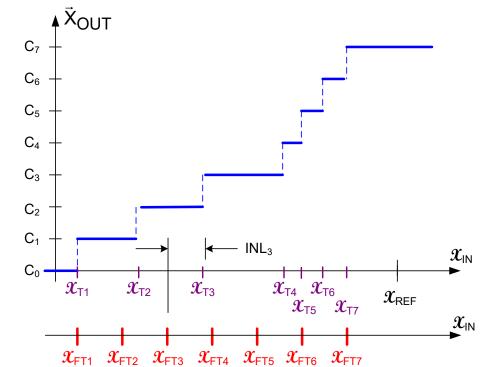


Often expressed in LSB

I

$$NL(\mathcal{X}_{IN}) = \frac{\tilde{\mathcal{X}}_{IN}(\mathcal{X}_{IN}) - X_{INF}(\mathcal{X}_{IN})}{\mathcal{X}_{LSB}}$$
$$INL = \max_{0 \le \mathcal{X}_{IN} \le \mathcal{X}_{REF}} \left\{ |INL(\mathcal{X}_{IN})| \right\}$$

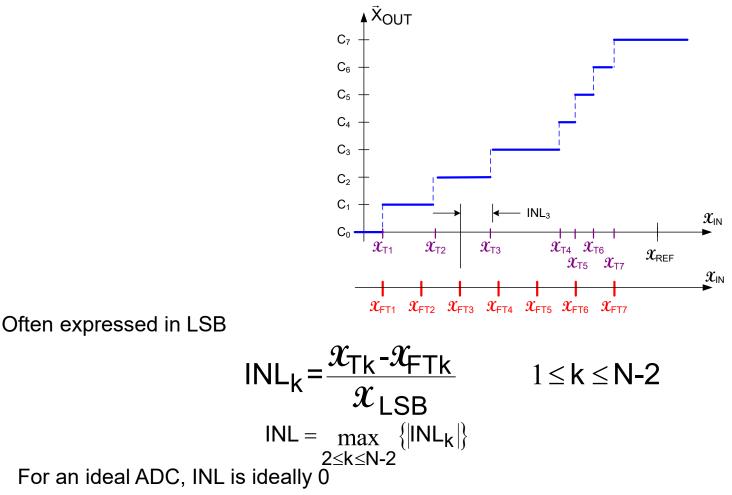
Nonideal ADC



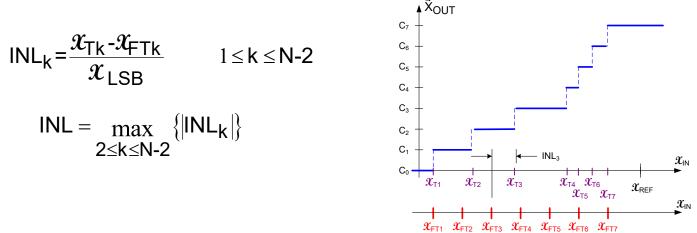
With this definition of INL, the INL of an ideal ADC is $\mathcal{X}_{LSB}/2$ (for $\mathcal{X}_{T1}=\mathcal{X}_{LSB}$)

This is effective at characterizing the overall nonlinearity of the ADC but does not vanish when the ADC is ideal and the effects of the breakpoints is not explicit

Nonideal ADC

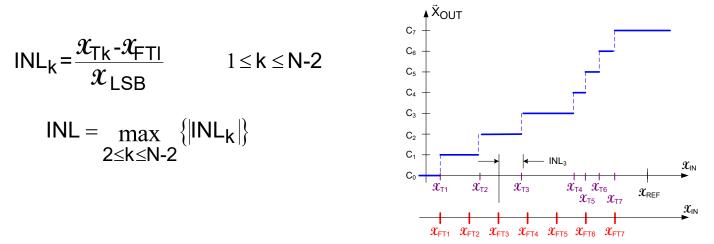

Break-point INL definition (assuming N-3 internal transitions)

Place N-3 uniformly spaced points between X_{T1} and X_{T(N-1)} designated \mathcal{X}_{FTk} $INL_{k} = \mathcal{X}_{Tk} - \mathcal{X}_{FTk}$ $1 \le k \le N-2$ $INL = \max_{2 \le k \le N-2} \{|INL_{k}|\}$


Nonideal ADC

Break-point INL definition (assuming N-3 internal transitions)

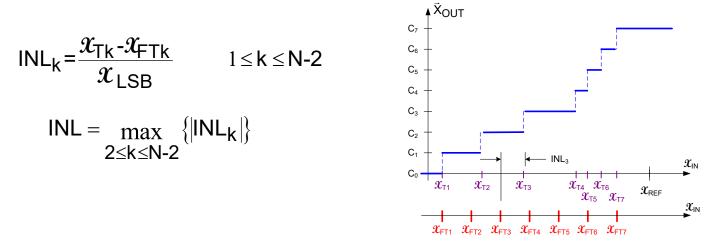
Nonideal ADC


Break-point INL definition (assuming N-3 internal transitions)

- INL is often the most important parameter of an ADC
- INL₁ and INL_{N-1} are 0 (by definition)
- There are N-3 elements in the set of INL_k that are of concern
- INL is a random variable at the design stage
- INL_k is a random variable for 0<k<N-1
- INLk and INLk+i are correlated for all k,j (not incl 0, N-1) for most architectures
- Fit Line (for cont INL) and uniformly spaced break pts (breakpoint INL) are random variables
- INL is the N-3 order statistic of a set of N-3 correlated random variables (breakpoint INL)
- INL is a parameter that is attempting to characterize the linearity of an ADC !

Nonideal ADC

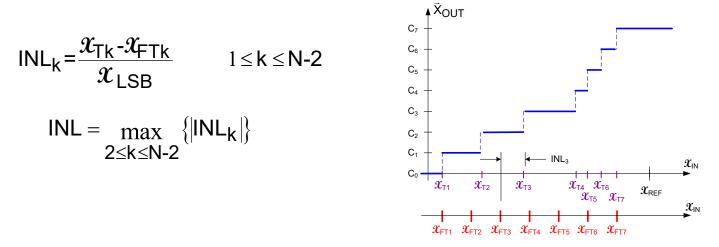
Break-point INL definition (assuming N-3 internal transitions)



What if there are less than N-3 internal transitions?

- Assume N-k internal transitions where k>3
- Data converter may still perform quite well !
- Insert N-k uniformly spaced values and use previous definition
- Unusual issues can crop up when testing data converters and it is important to have well-defined algorithms for handling these situations

Nonideal ADC


Break-point INL definition

- At design stage, INL characterized by standard deviation of many random variables
- Closed-form expressions for INL almost never exist because PDF of order statistics of correlated random variables is extremely complicated
- Simulation of INL very time consuming if n is very large (large sample size required to establish reasonable level of confidence)
 - -Model parameters become random variables
 - -Process parameters affect multiple model parameters causing model parameter correlation
 - -Simulation times can become very large

Nonideal ADC

Break-point INL definition

- INL can be readily measured in laboratory but often dominates test costs because of number of measurements needed when n is large
- Expected value of INL_k at k=(N-1)/2 is largest for many architectures
- INL of $\frac{\mathcal{X}_{LSB}}{2}$ often considered acceptable (this is the ideal value of the continuous-input INL)
- Major effort in ADC design is in obtaining an INL acceptable yield !
- Yield often strongly dependent upon matching of random variables !

Stay Safe and Stay Healthy !

End of Lecture 2